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Problem Statement 

Frostbite is a medical condition characterized by a freezing and ultimate death of tissue at 

subzero skin interface temperatures1. The body is unable to supply enough blood to warm the 

tissue which allows ice crystals to form in and around the cells, with the extremities most 

susceptible to injury. Most cases are found in groups with high risk to prolonged cold exposure: 

homeless individuals, winter sports enthusiasts, and mountaineers1. 

 Frostbite progresses through three pathophysiological phases – restriction, dilation, and 

extreme restriction. The normal cutaneous flow is 200-250 mL/min and decreases as a function 

of decreasing temperature. At a tissue temperature of 15°C, the maximal vascorestriction is 

reached and cutaneous flow decreases to 20-50 mL/min2. Between 15°C and 0°C, the skin enters 

the dilation phase and the vascorestriction is interrupted by periodic vasodilation with the body 

pulsing in new blood in an effort to save cold tissue2. Below 0°C, the skin enters the extreme 

restriction phase and the cutaneous blood flow drops to negligible amounts2. The goal of this 

work is to develop a model that describes the dynamic tissue temperature after extreme 

restriction. 

 
 
Background and Model 

The skin is a complex mosaic of various cell types and extracellular matrix components3. 

For the purpose of this analysis, the skin was simplified into a 5-layer system that was symmetric 

around the center, similar to the geometry found in the upper arm. The layers were defined as 

follows: epidermis (in contact with the external air), dermis, subcutaneous fat, deep muscle 

tissue, and bone (Fig 1). Each layer’s thickness and thermal conductivity are outlined in Table 

14,5. 
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Figure 1. Schematic of simplified skin tissue. Epidermis, dermis, subcutaneous, 
deep tissue, and bone layers are depicted in dark orange, pale orange, pink, red, 
and pale yellow, respectively. 

 
Table 1. Tissue Properties (Male, Upper arm)4 
Tissue Thickness (cm) Heat Diffusivity (cm2/s) 
Epidermis 0.08 5.57e-4 
Dermis 0.2 1.14e-3 
Subcutaneous (Fat) 1.0 5.43e-4 
Deep Tissue (Muscle) 3.0 1.25e-3 
Bone5 1.2 0.11e-1 

 
These layers were chosen to match the typical clinical grading of frostbite cases. First 

degree frostbite, or frostnip, and second degree frostbite are the freezing of the epidermis and 

dermis, respectively. These grades of frostbite are able to be repaired by the body. Third and 

fourth degree frostbite are the freezing of the subcutaneous and deep tissue layers, respectively, 

and result in permanent damage of tissue and ultimately necrosis. Therefore, it was important to 

distinguish each layer as a separate entity in order to accurately model the kinetics of frostbite. 

 During the extreme restriction phase, blood flow is negligible and no new heat is added 

into the tissue. Therefore, conduction is the sole driving force for heat loss and allowed for the 

use of the simplified heat equation (1) to model the dynamic tissue temperature. 

𝜕𝑇
𝜕𝑡

= 𝑘 𝜕2𝑇
𝜕𝑥2

       (1) 
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The following simplifying assumptions were also made: 

1. The tissue layers are uniform 
2. Each tissue has its own thermal diffusivity and heat transfer coefficient 
3. No additional convection or heat generation occur in the body 
4. No convection occurs at the air-skin interface (i.e. no wind) 

 
Finally, the following initial and boundary conditions were assumed: 
 

𝐼.𝐶. :    𝑇(0, 𝑥) = 37  𝑎𝑛𝑑 𝐵.𝐶. :𝑇(𝑡, 0) = 𝑇(𝑡, 𝐿) = 𝑇𝑎𝑖𝑟 
 
 
Analytical Solution 

 In order to obtain the analytical solution, the model was further simplified in order to 

make it tractable; namely, the tissue was assumed to be homogeneous throughout. This was 

achieved by calculating the weighted average of the heat diffusivity throughout the tissue, which 

was found to be 3.35e-3 cm2/s. Using this value for k, Equation 1 was solved using separation of 

variables, where the position- and time-dependent functions were solved separately to obtain the 

eigenvalues and eigenfunctions for the complete solution. As a final note, the coefficient was 

obtained by applying the initial conditions and taking the Fourier sine series of the resulting 

expression. The analytical solution is found in Equation 2 below; the complete process of solving 

for the solution can be found in Appendix A. 

 

𝑇(𝑥, 𝑡) = 𝑇𝑎𝑖𝑟 + ∑ 2∗�𝑇𝑏𝑜𝑑𝑦−𝑇𝑎𝑖𝑟�∗(1−(−1)𝑛)
𝑛Π

sin �𝑛Π𝑥
𝐿
� 𝑒−𝑘�

𝑛Π
𝐿 �

2
𝑡∞

𝑛=1  (2) 

 
 This solution was then implemented in Matlab, taking only the first 100 terms of the 

infinite sum for temperatures of 0oC (the minimum temperature required for tissue to reach 0oC 

in our model) and -89.2oC (the coldest recorded temperature ever6). The resulting surface plot for 
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0oC can be found in Figure 2, though it is more instructive to look at 2D plots of the heat 

distribution, which can be found in Figure 3. 

 
Figure 2: The analytical temperature distribution across the tissue over time for 
a homogonous tissue model and an external temperature of 0° C. 
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Figure 3: Comparison of analytical result at Tair = 0oC (left) and Tair = -89.2oC 
(right), showing that cooling trend does not change, but relative temperatures do 
(note the scale bars, where on the right 0oC is reached throughout the tissue in 
approximately 8000s on the left, while it only takes about 2000s on the right). 
 

As expected, the heat distribution in the tissue decreases evenly with time in a half-sine wave 

pattern. This is an acceptable if rough approximation of the heat loss that occurs during frostbite, 

where deeper tissues retain heat and avoid permanent damage longer than superficial tissues. 

From our analytical result, we can confirm that the model is appropriate for the given problem in 

that the pattern of heat loss approximates that found in vivo, and that by introducing more 

complexity into the model and implementing numerical methods we may use Equation 1 in 

deriving a more accurate model of the progression of frostbite in human tissue. 

 

Numerical analysis 

Because the analytical solution limits the ability to manipulate variables such as k, a 

numerical solution was used to visualize various adjustments to our model. All numerical 

solutions were produced using explicit finite difference.  
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Our first finite difference model utilized the same parameters as our analytical solution to 

verify the results of both models. The external temperature was kept at 0° C and a homogenized 

value for k was applied. The results at these conditions are illustrated in Figure 

 

                                          (a)                                                                                 (b) 
 

Figure 4: The temperature distribution across the tissue and time for a 
homogonous tissue model and an external temperature of 0° C. (a) is the finite 
difference solution while (b) is the analytical solution. The color bar indicates 
the temperature (° C) of the tissue. 

 
We can see that both qualitatively and quantitatively the analytical and numerical 

solutions agree. It would be useful to obtain the time at which the temperature of the skin falls to 

0°, the temperature at which we have stated frostbite sets in. However, because of the 

methodology of finite difference, the temperature in the tissue will never fall below or reach the 

temperature of the air surrounding; it will only approach that value as time approaches infinity. 

In this first case, and in any case where the external temperature is 0° C, the values for tissue 

temperature never reach zero and therefore no time point can be obtain. If a threshold value was 

established for which any temperature below that value was considered zero, the time to 0° C 

could be establish but would be highly variable based on the threshold chosen.  
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The second finite difference model that was employed divided the tissues up into distinct 

layers, each with their own thermal properties. The layers and their properties are given in Table 

1. The results of numerical analysis with the variegated tissue properties are given in Figure 5.  

Figure 5. The temperature distribution across the tissue and time for a layered 
model and an external temperature of 0° C. The color bar indicates the 
temperature (° C) of the tissue. 

 
As expected, we get a thermal profile quite different from that in the case of homogenous 

tissue properties. Most strikingly, we notice the region of relative flatness in the central region of 

the limb cross section; this region represents the bone. The relatively high thermal diffusivity of 

bone results in an area of dramatically different curvature than the rest of the tissue. The 

variegation of tissue properties improves the accuracy of the model. Again the time to 0° C 

cannot be obtained due to the limitation of the numerical method as stated above.  

Our third, fourth, fifth, and sixth models look at the effect of external temperature on the 

temperature distribution in the tissue. Three cases are proposed. The first models a relatively 

common outdoor winter temperature for regions with relatively cool climates. -5° C was the 

external temperature for this scenario. The second model was an outdoor extreme temperature of 

-40° C. The final outdoor temperature scenario considered was the coldest temperature recorded 
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in history, -89.2° C. Our final temperature consideration modeled the tissue being exposed to 

liquid nitrogen at -196° C. The data for these models is given below in Figure 6 and Table 2.  

    
                                     (a)                                                                       (b) 

 
                                     (c)                                                                       (d) 

 
 
Figure 6: The temperature distribution across the tissue and time for a layered 
model and an external temperature of (a) -5° C, (b) -40° C, (c) -89.2° C, (d) -
196° C. The color bar indicates the temperature (° C) of the tissue. 
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Table 2: The times at which various tissues freeze in each external condition. 
External Temperature 

(° C) 
Time for Dermis to 

Freeze 
(s) 

Time for Subcutaneous to 
Freeze 

(s) 

Time to Freeze to 
Bone 

(s) 
-5 391 9783 15497 

-40 10 1616 6068 
-89.2 4 834 4059 
-196 1.8 496 2836 

 
At lower external temperatures, the temperature profiles demonstrate much sharper 

gradients and the tissue layers reach 0° C more rapidly. This result is what is intuitively expected 

in colder temperatures.  

 

Conclusion 

Both the analytical and numerical methods used in this analysis produced similar 

solutions to the model proposed. The numerical solution allowed for a higher degree of 

manipulation and therefore allowed for a more realistic result. While the qualitative and order of 

magnitude results produced herein may provide information on the process of frostbite, the 

quantitative results are highly inaccurate. Several significant contributors to tissue temperature 

were neglected, including wind chill (convective effects), metabolism (heat generation), and the 

dynamics of thermal properties (changing k values and freezing energy). Ignoring blood flow 

and metabolism are not unreasonable assumptions in freezing conditions, however, the neglect of 

wind chill, freezing energy, and insulation effects of frozen exterior tissues are significant flaws 

in the given model. Accounting for these effects will make the model more complicated but also 

will provide results that more closely mimic the actual temperature distribution.  

Other than the implementation of convective terms on the surfaces and heat generation 

within the tissue, a simple manner in which the model could be improved relatively easily is the 
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implementation of cylindrical co-ordinates, which would better approximate the cylindrical 

shape of the upper arm. Another simple modification that could prove valuable would be the 

implementation of parameters that better approximate the tissue structure of a toe or finger, as 

these are the two extremities of the human body that are most commonly affected by frostbite1. 
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Appendix A: Solution to Analytic Equation 
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Appendix B: Matlab Code for Analytic Solution 

clear 
  
%PDE: dT/dt = k d^2T/dx^2 
  
%Parameters: 
L = 5.45*2; %cm 
k = 3.35e-3; %cm^2/s 
Tbody0 = 37; %degC 
Tair = -89.2; %degC 
  
dx = .02; 
dt = .1; 
tf = 10000; 
  
xmesh = 0:dx:L; 
xlength = length(xmesh); 
tmesh = 0:dt:tf; 
tlength = length(tmesh); 
  
%IC's 
heat = zeros((tf/dt+1),(L/dx)); 
heat(1,:) = Tbody0; 
  
x=0; 
t=0; 
bnew=0;%zeros(2,1); 
Tbody = Tbody0;  
heat1 = 0; 
  
%BC's 
heat(:, 1) = Tair; 
heat(:, xlength) = Tair; 
  
%Analytical Solution as a surface plot --> First 5 terms in infinte series 
  
for t = 2:tlength 
     for x = 2:xlength-1 
          for n = 1:2:101 
            b(n) = (4*(Tbody-Tair)/(n*pi))* ...   
                sin(n*pi*(x*dx)/L)*exp(-k*((n*pi/L)^2)*(t*dt)); 
          end 
          heat(t,x) = sum(b)+Tair; 
      end 
end 
  
% surf(tmesh(1:250:end),xmesh,heat(1:250:end,:)', 'edgecolor', 'none') 
% set(gca,'FontSize',20) 
% axis([0 10000 0 10.75 -90 40]) 
% xlabel('Time in seconds','FontSize',15),ylabel('Position in 
cenitmeters','FontSize',15)... 
%     ,zlabel('Temperature in Celsius','FontSize',15) 
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Appendix C: Matlab Code for Numeric Solution 

%BENG 221 Project 
%Numerical Solution 
  
%Clear and Format 
clc 
clear 
  
%Set Parameters 
L=1; %cm 
k=5.57E-8; %cm^2/s 
T1=37; %Deg C, Body Temperature 
T2=-196; %Deg C, Outside temperature 
  
%Thickness of each layer (m) 
epi=80E-6; %Epidermis 
der=0.002; %Dermis 
sub=0.01; %Subcutaneous 
dee=0.03; %Deep Tissue 
bon=.025; %Bone 
  
%Define layers for mesh 
th1= epi;  
th2= th1+der;  
th3= th2+sub;  
th4= th3+dee;  
th5= th4+bon; 
th6= th5+dee; 
th7= th6+sub; 
th8= th7+der; 
th9= th8+epi; 
  
% domain 
dx = 0.001; % step size in x dimension 
dt = 0.1; % step size in t dimension 
xmesh = 0:dx:th9; % domain in x 
tmesh = 0:dt:21400; % domain in t 
  
%%%solution using finite differences 
  
%Set up solutoion Mesh 
nx = length(xmesh); % number of points in x dimension 
nt = length(tmesh); % number of points in t dimension 
sol_fd = zeros(nt,nx); 
  
%Set Initial Conditions 
sol_fd(:,nx) = T2; 
sol_fd(1,2:nx-1) = T1;% initial conditions; delta impulse at center 
sol_fd(:,1) = T2; 
  
%Solve 
for t = 1:nt-1 
    for x = 2:nx-1 
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        pos=x*dx; 
        if pos<th1 
            k=5.57E-8; %thermal difusivity of epidermis (m^2/s) 
        elseif pos<=th2 && pos>th1 
            k=1.14E-7; %thermal difusivity of dermis (m^2/s) 
        elseif pos<=th3 && pos>th2 
            k=5.43E-8; %thermal difusivity of subcutaneous (m^2/s) 
        elseif pos<=th4 && pos>th3 
            k=1.25E-7; %thermal difusivity of epidermis (m^2/s) 
        elseif pos<=th5 && pos>th4 
            k=0.11E-5; %thermal difusivity of bone (m^2/s) 
        elseif pos<=th6 && pos>th5 
            k=1.25E-7; %thermal difusivity of epidermis (m^2/s) 
        elseif pos<=th7 && pos>th6 
            k=5.43E-8; %thermal difusivity of subcutaneous (m^2/s) 
        elseif pos<=th8 && pos>th7 
            k=1.14E-7; %thermal difusivity of dermis (m^2/s) 
        else 
            k=5.57E-8; %thermal difusivity of epidermis (m^2/s) 
        end 
        stepsize = k * dt / dx^2; % stepsize for numerical integration 
        %Calculation of new values  
        sol_fd(t+1,x) = sol_fd(t,x) + stepsize *(sol_fd(t,x+1)-2 * 
sol_fd(t,x) + sol_fd(t,x-1)); 
    end 
end 
  
%Calculate time for freezing 
  
indder=find(sol_fd(:,round(th2/dx))<=0,1,'first'); 
tderfr=dt*indder(1,1) 
indsub=find(sol_fd(:,round(th3/dx))<=0,1,'first'); 
tsubfr=dt*indsub(1,1) 
inddee=find(sol_fd(:,round(th4/dx))<=0,1,'first'); 
tsdeefr=dt*inddee(1,1) 
  
  
% %Plot 
% clf 
% figure(1) 
% surf(xmesh,tmesh(1:1000:nt),sol_fd(1:1000:nt,:), 'edgecolor', 'none') 
% axis([0 nx*dx 0 nt*dt 0 40 0 40]) 
% xlabel('Position in Tissue in Meters', 'rot', 90) 
% ylabel('Time in Seconds') 
% zlabel('Temperature in Celcius') 
% colorbar('location', 'WestOutside') 
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